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Abstract. This paper develops a theory of propagation of chaos for a system of weakly interacting
particles whose terminal configuration is fixed as opposed to the initial configuration as customary. Such
systems are modeled by backward stochastic differential equations. Under standard assumptions on the
coefficients of the equations, we prove propagation of chaos results and quantitative estimates on the
rate of convergence in Wasserstein distance of the empirical measure of the interacting system to the
law of a McKean-Vlasov type equation. These results are accompanied by non-asymptotic concentration
inequalities. As an application, we derive rate of convergence results for solutions of second order
semilinear partial differential equations to the solution of a partial differential written on an infinite
dimensional space.

1. Introduction

The theory of propagation of chaos takes its origin in the work of M. Kac [32] whose initial aim was to
investigate particle system approximations of some nonlocal partial differential equations (PDE) arising
in thermodynamics. The intuitive idea is the following: Consider a large number n of (random) particles
starting from n given independent and identically distributed random variables and whose respective
dynamics interact. Because there is no deterministic pattern for the starting position of the particles,
one says that the initial configuration is chaotic. Kac’s insight was that if the interaction between
the particles is “sufficiently weak” and the particles are “symmetric”, then as the size of the system
increases, there is less and less interaction and in the limit the particles “become independent”. That
is, the initial chaotic configuration propagates over time. This intuition was put into firm mathematical
ground notably by McKean [39], Sznitman [44] and Gärtner [21] and has generated a rich literature
with a variety of fundamental applications. We refer for instance to [38; 34; 5; 43; 29; 31; 30] for a few
recent developments and applications. In particular, the theory of propagation of chaos has undoubtedly
motivated (and benefited from) the more recent and very active theory of mean-field games introduced
by Lasry and Lions [36] and Huang et al. [26].

The basic question motivating the present work is to ask whether Kac’s intuition carries over to
systems of particles with chaotic terminal configurations. There are numerous such examples, for
instance in quantitative finance where different parties independently set investment goals which need
to be met at a prescribed future date, but with inter-temporal trading decisions that are correlated.
More precisely, we ask whether a chaotic terminal configuration will propagate to past configurations as
the size of the system becomes large. As mentioned above, an important application at the origin of the
theory of propagation of chaos is the particle system approximation of some nonlocal PDEs. We also
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analyze such an application in the present setting and use the backward propagation of chaos viewpoint
to derive a particle system approximation of a semilinear PDE written on an infinite dimensional
space (akin to the master equation in the theory of mean-field games). The interest here lies in the
fact that, being written on a finite dimensional space, the approximating PDEs are much easier to
handle analytically. For instance, well-developed theories of weak solutions and interior estimates for
the gradients are available for such equations. The main idea leading to this approximation result is
the probabilistic representation of solutions of some parabolic PDEs, especially due to Chassagneux
et al. [16], which allows us to transform the problem of approximating PDE solutions into a purely
probabilistic question.

In the present paper, we model backward particles by solutions of backward stochastic differential
equations (BSDEs) as introduced by Pardoux and Peng [41]. The interaction is through the empirical
distribution of the system. In the main contributions of the paper we derive various convergence results
of the n-particle system to solutions of McKean-Vlasov BSDEs under classical Lipschitz continuity
conditions on the generator and integrability conditions on the terminal value. The focus is put on
deriving explicit, non-asymptotic convergence rates for the empirical measure as well as the processes.
We strengthen our convergence results by deriving concentration inequalities, some of which dimension-
free. All our results are gathered in the next section. The main result relies on an adaptation of the
coupling technique of Sznitman [44] and BSDE estimates on the one hand, and arguments from the
theory of measure concentration on the other hand, notably results from Bartl and Tangpi [3].

To the best of our knowledge, only the papers of Buckdahn et al. [7] and Hu et al. [25] touch upon
limit results for interacting backward particles. Both papers consider a particular type of interaction,
see Remark 9 and Example 13 for details. In [7], a convergence rate for the interacting processes to the
McKean-Vlasov equation is derived; we recover their result by a different argument based on functional
inequalities for BSDEs. In [25] (where the term “backward propagation of chaos” is first coined) a
convergence result for the empirical measure of the interacting particles is obtained. However, nothing
is said concerning the rate of convergence. Another somewhat related article is the work by Briand
et al. [6] on the approximation of BSDEs with normal constraints in law.

The ideas and results of the present paper are also connected to the theory of mean field games,
which has recently attracted a surge of interest. In fact, BSDEs of mean-field type arise naturally in
optimality conditions for mean field games (MFG) with interactions through the controls, which are
sometimes referred to as “extended MFG” or “MFG of controls” and have been introduced by Gomes
et al. [22]. Such models are particularly relevant in economics and finance, cf. e.g. Chan and Sircar
[15]; Cardaliaguet and Lehalle [10]. The connection with mean-field BSDEs stems from Pontryagin’s
maximum principle and has been stressed by Carmona and Delarue [12, Section 4.7.1] and more recently
by Acciaio et al. [1]. A more extensive discussion on the applications of our results to large population
games and mean-field games will be considered elsewhere.

Concerning the approximation problem of PDEs on the Wasserstein space by PDEs on finite dimen-
sional Euclidean spaces, let us mention that a similar question was first analyzed by Cardaliaguet et al.
[11] (see also Lasry and Lions [35]; Cardaliaguet [8]) based on PDE estimations they derive for the finite
dimensional system. Their results concern the quasilinear form of the master equation. Our contribu-
tion here is mainly methodological, as we obtain a convergence result by purely probabilistic techniques.
However, our setting also differs from that of [11; 8] in a number of ways, the most important difference
being the type of nonlinearities in the measure argument that we consider.

In the rest of the paper, we dedicate Section 2 to the presentation of the precise setting of the work
and its main results. The proofs are postponed to Section 3.
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2. Setting and main results

2.1. Setting and Notation. Let d,m ∈ N be fixed. Unless otherwise specified, Rd,Rm and Rd×m are
endowed with the Euclidean norm denoted by | · | in all cases. Let us denote by Ω := C([0, T ],Rd) the
space of continuous functions from [0, T ] to Rd, by P the Wiener measure on Ω and by W the canonical
process given by Wt(ω) = ω(t). As usual, equalities and inequalities between random variables will be
understood to hold up to null sets of the Wiener measure. It is well-known that W is a P -Brownian
motion. Let W 1, . . . ,Wn be n independent copies of W and denote by Fn := (Fnt )t∈[0,T ] the completion

of the raw filtration of W 1, . . . ,Wn. Let us equip Ω with the filtration Fn. We will always use the
identification

W ≡W 1 and F ≡ F1.

Given a vector x := (x1, . . . , xn) ∈ (Rm)n, denote by

Ln(x) :=
1

n

n∑
k=1

δxk

the empirical measure associated to x. Then, Ln(x) ∈ Pp(Rm), the set of probability measures on Rm
with finite pth moment. Let us be given a function F : [0, T ] × Ω × Rm × Rm×d × P2(Rm) → Rm, and
a family of FT -measurable i.i.d. random variables G1, . . . , Gn. We are interested in the asymptotic
behavior (as n becomes large) of a family of weakly interacting processes (Y 1,n, · · · , Y n,n) evolving
backward in time and given by

(1) Y i,n
t = Gi +

∫ T

t
Fu(Y i,n

u , Zi,i,nu , Ln(Yu)) du−
n∑
k=1

∫ T

t
Zi,k,nu dW k

u , i = 1, . . . , n,

where we used the notation Y := (Y 1,n, . . . , Y n,n). Here as well as in the remainder of the article, we
assume that for every (y, z, µ) ∈ Rm × Rm×d × P2(Rm) the stochastic process F (·, ·, y, z, µ) : (t, ω) 7→
F (t, ω, y, z, µ) is progressively measurable. In analogy to weakly interacting particles evolving forward
in time, in the limit, the above family will be intrinsically linked to the so-called McKean-Vlasov BSDE

(2) Y i
t = Gi +

∫ T

t
Fu(Y i

u, Z
i
u,L(Y i

u)) du−
∫ T

t
Ziu dW

i
u.

Hereby (and henceforth) L(X) denotes the law of the random variable X with respect to the probability
measure P . Since under our assumptions on F and Gi the processes (Y i)i will be i.i.d., we will often
omit the superscript i and simply write L(Y ) for the law of Y i.

We equip the space Pp(Rm) with the pth order Wasserstein distance denoted by Wp and defined as

Wp(µ, ν) := inf

{∫
Rm×Rm

|x− y|p dπ
}1/p

where the infimum is over probability measures π on Rm × Rm with first and second marginals µ and
ν, respectively. Given p ∈ [1, 2], we will often consider the condition

(Lipp) The function F is LF -Lipschitz continuous and of linear growth in the sense that there is a
constant LF ≥ 0 such that,

|Ft(y, z, µ)− Ft(y′, z′, µ′)| ≤ LF
(
|y − y′|+ |z − z′|+Wp(µ, µ

′)
)

and

|Ft(y, z, µ)| ≤ LF
(

1 + |y|+ |z|+
(∫

Rd

|x|p dµ
)1/p

)



4 MATHIEU LAURIÈRE & LUDOVIC TANGPI

for all t ∈ [0, T ], y, y′ ∈ Rm, z, z′ ∈ Rm×d and µ, µ′ ∈ Pp(Rm).

Remark 1. Note at once that under condition (Lipp), and if Gi has a finite second moment, i.e.
E[|Gi|2] <∞, then the equations (1) and (2) admit unique, square integrable solutions. See the beginning
of Section 3 for details.

Throughout, we denote by Y the value process of the solution of (1) and by Y that of (2), say with
i = 1.

Having made precise the probabilistic setting governing the paper, let us now presents its main
results. Most of them pertain to the limiting behavior of Y i,n. As explained in the introduction, we also
deduce approximation of parabolic PDEs on the Wasserstein space. The focus is put on quantitative
(i.e. non-asymptotic) estimations of convergence rates. All proofs are postponed to Section 3.

2.2. Convergence of empirical distributions. We start by showing that the empirical distribution
Ln(Yt) of the system converges to the law L(Yt) of the McKean-Vlasov BSDE.

Theorem 2. Let p ∈ [1, 2]. Assume that E[|Gi|k] <∞ for some k such that k > p and k ≥ 2, and that
F satisfies (Lipp). Then it holds that

(3) E
[
Wp
p (Ln(Yt),L(Yt))

]
≤ Crn,m,q,p, ∀t ∈ [0, T ],

with

(4) rn,m,q,p :=


n−1/2 + n−(q−p)/q, if p > m/2 and q 6= 2p

n−1/2 log(1 + n) + n−(q−p)/q, if p = m/2 and q 6= 2p

n−p/m + n−(q−p)/q, if p ∈ (0,m/2) and q 6= d/(m− p)

for all p < q < k, and for some constant C depending on T,m,LF , p, k and E[|Gi|k].

It is well-known that the Wasserstein topology is much stronger than the weak topology. Thus,
Theorem 2 shows, in particular, that the sequence of (random) measures (Ln(Yt))n converges to the
(deterministic) measure L(Yt) in the weak topology. This can be seen as a type of quantitative law
of large numbers. As a direct application we obtain the following strong law of large numbers for the
sequence Y i,n.

Corollary 3. Let p ∈ [1, 2). Assume that E[|Gi|2] <∞ and that F satisfies (Lipp). Then we have the
L1(Ω, P )-limit

lim
n→∞

1

n

n∑
i=1

Y i,n
t = E[Yt] for every t.

Proof. By the Kantorovich-Rubinstein duality, we have

E

[
|
∫
Rm

f(y)dLn(Yt)(y)−
∫
Rm

f(y) dL(Yt)(y)|
]
≤ E [W1(Ln(Yt),L(Yt))] ≤ Crn,m,q,p

for some p < q < 2 and for every 1-Lipschitz function f : Rm → R. In particular, taking f(x) = x yields
the result. �

Remark 4. Under a stronger integrability condition, namely that E[|Gi|k] < ∞ for some k > m + 5,
the argument of the above theorem allows to obtain the bound

(5) E
[
Wp
p (Ln(Yt),L(Yt))

]
≤ Cn−p/(m+4) for all (t, n) ∈ [0, T ]× N

for some constant C depending only on T,m,LF , G and E[|Gi|k].
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The estimates (3) and (5) are uniform in time in the sense that the convergence rate is time-
independent, but the supremum (in t) can be taken only outside the expectation on the left hand
side. A stronger uniform estimate can be obtained at the cost of also stronger integrability conditions
and a worse convergence rate.

Proposition 5. Assume that E[|Gi|k] < ∞ for some k > m + 5, and that F satisfies (Lipp) for some

p ∈ [1, 2]. Further assume that the solution (Y, Z) of (2) is such that supt∈[0,T ]E[|Zt|2k] <∞. Then it
holds

(6) E
[

sup
t∈[0,T ]

Wp
p (Ln(Yt),L(Yt))

]
≤ Cn−p/(m+8) for all n ∈ N, and p ∈ [1, 2]

for some constant C depending on T, LF , k, E[|Gi|k] and supt∈[0,T ]E[|Zt|2k].

Remark 6. The assumption suptE[|Zt|2k] < ∞ is by no means a restrictive one, since it has been
shown to hold in many classical cases. For instance, when Gi = G(W i

T ) for a bounded and Lipschitz

continuous function G, and Ft(·, ·, µ) is differentiable for all (t, µ), then it holds E[supt∈[0,T ] |Zt|2k] <∞
for all k ≥ 1, see [28, Theorem 5.3]. Alternatively, under conditions on the Malliavin differentiability
of G and F , it can be shown that Z is even bounded, see [17; 33] for details. The results of these papers
apply for instance when G is Lipschitz continuous on the path space equipped with the supremum norm
and F is deterministic. In this case, the integrability condition on G also follows.

2.3. Concentration estimates. Given two probability measures Q1 and Q2 on Ω, let us denote the
pth order Wasserstein distance on Ω equipped with the supremum norm by

Wp,||·||∞(Q1, Q2) := inf

{∫
Ω×Ω

sup
t∈[0,T ]

|ω1(t)− ω2(t)|p dπ(ω1, ω2)

}1/p

where the infimum is over probability measures π on Ω × Ω with first and second marginals Q1 and
Q2, respectively. The following result gives concentration estimates for the interacting family Y. We
consider concentration for the time t marginal as well as for the law of the entire process.

Theorem 7. Let p ∈ [1, 2]. Assume that E[|Gi|k] < ∞ for some k > 2p, and that F satisfies (Lipp).
Then it holds that, for all ε ∈ (0,∞) and εF,T := ε/ exp(TeLFT ),

(7) P (Wp(L
n(Yt),L(Yt)) ≥ ε) ≤ C

(
an,εF,T 1{εF,T≤1} + bn,k,εF,T

)
with bn,k,ε := n(nε)−(k−δ)/p and

an,ε :=


exp(−cnε2), if p > m/2

exp(−cn(ε/ log(2 + 1/x))2), if p = m/2

exp(−cnεm/p), if p ∈ (0,m/2)

for three positive constants δ ∈ (0, k), C and c depending on p,m, k, T , LF and E[|Gi|k].
Moreover, if the functions Ft and Gi are also Lipschitz continuous as functions on (Ω, || · ||∞), that

is,

|Ft(ω, y, z, µ)− Ft(ω′, y′, z′, µ′)| ≤ LF
(
||ω − ω′||∞ + |y − y′|+ |z − z′|+Wp(µ, µ

′)
)

and |Gi(ω)−Gi(ω′)| ≤ LG||ω − ω′||∞,
then it holds that

(8) P
(∣∣W2,‖·‖∞(Ln(Y),L(Y ))− E[W2,‖·‖∞(Ln(Y),L(Y ))]

∣∣ ≥ ε) ≤ 2e−Cε
2n
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for a constant C depending only on LF , LG and T .
If in addition F does not depend on z, then there is n0 ∈ N such that for all n ≥ n0 we have

(9) P
(
W2,||·||∞(Ln(Y),L(Y )) ≥ ε

)
≤ e−Cε2n

for some constant C depending on T, LF , LG,m and k.

The proof of Theorem 7 relies on quadratic transportation inequalities for BSDEs investigated in [3]
and on standard results from the theory of concentration of measure, see Section 3.2.

2.4. Interacting particles approximation of McKean-Vlasov BSDE. This section is concerned
with convergence of the sequence of stochastic processes (Y i,n, Zi,n) to the solutions of the McKean-
Vlasov equation. These results will easily yield quantitative propagation of chaos results and have
interesting applications in terms of PDEs.

Theorem 8. Assume that E[|G1|k] < ∞ for some k > 2, and that F satisfies (Lipp). Then it holds
that

(10) E

[
sup
t∈[0,T ]

|Y 1,n
t − Y 1

t |2
]

+ E

[∫ T

0
|Z1,1,n
t − Z1

t |2 dt
]
≤ Crn,m,q,2 for all (t, n) ∈ [0, T ]× N

for all q ∈ (2, k) and for some constant C depending on T,m,LF , LG and E[|Y 1
t |k] and rn,m,q,2 is defined

by (4).

Remark 9. The above result shows that in general, the sequences (Y i,n) and (Zi,i,n) converge at the
same rate as Ln(Yt). In the special case of particles in “linear” interaction, such a convergence result
has been analyzed in [7]. More precisely, [7] considers the case when Y = (Y 1,n, . . . , Y n,n) solves the
system

(11) Y i,n
t = Gi +

∫ T

t

1

n

n∑
j=1

fu(Y i,n
u , Y j,n

u , Zi,i,nu ) du−
∫ T

t
Zi,nu dWu

where W is a given Brownian motion, and (G1, . . . , Gn) are functions of the terminal values of a system
of interacting (forward) particles. In this case, the rate of convergence of the n-particle system to the
McKean-Vlasov equation can be improved and does not depend on the dimension. Interestingly, we can
slightly generalize the result of [7] using different arguments. We consider the system

(12) Y i,n
t = Gi +

∫ T

t
Fu

(
Y i,n
u , Zi,i,nu ,

1

n

n∑
j=1

fu(Y i,n
u , Y j,n

u , Zi,nu )
)
du−

∫ T

t

n∑
j=1

Zi,j,nu dW j
u

that often appears in applications, see e.g. [27; 4; 14] for linear-quadratic mean-field models and [25]
for a contract theory problem. We obtain the usually optimal rate 1/

√
n for this more general system.

In fact, consider the McKean-Vlasov equation

(13) Y i
t = Gi +

∫ T

t
Fu

(
Y i
u, Z

i
u,

∫
Rm

fu(Y i
u, y, Z

i
u) dL(Y i

u)(y)
)
du−

∫ T

t
Ziu dW

i
u

and the following Lipschitz continuity and linear growth conditions
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(Lip) The functions F : [0, T ] × Ω × Rm × Rm×d × Rm → Rm and f : [0, T ] × Rm × Rm × Rm×d →
Rm are respectively LF -Lipschitz and Lf -Lipschitz continuous and of linear growth in (y, z, a)
and (y1, y2, z) uniformly with respect to (t, ω) and t respectively. That is, there are constants
LF , Lf ≥ 0 such that

|Ft(ω, y, z, a)− Ft(ω′, y′, z′, a′)| ≤ LF
(
‖ω − ω′‖∞ + |y − y′|+ |z − z′|+ |a− a′|

)
|Ft(y, z, a)| ≤ LF (1 + |y|+ |z|+ |a|)

and
|ft(y1, y2, z)− ft(y′1, y′2, z′)| ≤ Lf

(
|y1 − y′1|+ |y2 − y′2|+ |z − z′|

)
|ft(y, y1, z)| ≤ Lf (1 + |y|+ |y1|+ |z|)

for all t ∈ [0, T ], a, a′, y, y′, y1, y2, y
′
1, y
′
2 ∈ Rm, z, z′ ∈ Rm×d.

Remark 10. Note that under (Lip), if Gi has a second moment, then both equations (12) and (13)
admits unique, square integrable solutions.

Proposition 11. Assume that E[|Gi|2] < ∞ and is Lipschitz continuous with respect to the uniform
norm on Ω, and that the functions F and f satisfy (Lip). The respective solutions (Y i,n, Zi,j,n) and
(Y i, Zi) of the equations (12) and (13) satisfy

(14) E
[
|Y 1,n
t − Y 1

t |2
]

+ E

[∫ T

0
|Z1,n
t − Z1

t |2 dt
]
≤ Cn−1 for all (t, n) ∈ [0, T ]× N

for some constant C depending only on T, LF , Lf and LG.

Direct consequences of Theorem 8 and Proposition 11 are the following quantitative propagations of
chaos.

Corollary 12. Put θk,n := Law(Y 1,n, . . . , Y k,n) and let L(Y )⊗k be the k-fold product of the law L(Y 1)
of Y 1, solution of the McKean-Vlasov BSDE (2). If (Y i,n, Zi,j,n) and (Y i, Zi) solve (1) and (2) respec-
tively, then under the conditions of Theorem 2, we have, for all n ∈ N and all k ≤ n, that

(15)

{
W2

2,||·||∞(L(Y 1,n),L(Y 1)) ≤ Crn,m,q,p
W2

2,||·||∞(θk,n,L(Y )⊗k) ≤ kCrn,m,q,p
for some constant C depending on T, LF , LG and m.

If (Y i,n, Zi,j,n) and (Y i, Zi) solve (12) and (13) respectively, then under the conditions of Proposition
11 we have, for all (t, n) ∈ [0, T ]× N and all k ≤ n, that

(16)

{
W2

2 (L(Y 1,n
t ),L(Y 1

t )) ≤ Cn−1

W2
2 (θk,nt ,L(Yt)

⊗k) ≤ kCn−1

for some constant C depending on T, LF , LG, Lf and m.

Proof. Since L(Y 1
t ) = L(Y i

t ), it follows by definition that

W2
2,||·||∞(L(Y 1,n),L(Y 1)) ≤ E

[
sup
t∈[0,T ]

|Y 1,n
t − Y 1

t |2
]

and

W2
2,||·||∞(θk,n,L(Y )⊗k) ≤ E

[
k∑
i=1

sup
t∈[0,T ]

|Y i,n
t − Y i

t |2
]
.
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Thus, (15) follows by (10). Similarly (16) follows by (14). �

Example 13 (Convolution interaction). In relation to a principal-agent problem of mean-field type, Hu
et al. [25] investigated the case of the generator Ft(y, z, µ) := ϕ ∗ µ(y) for some function ϕ : Rm → Rm,
where the convolution ϕ∗µ is defined as ϕ∗µ(x) :=

∫
Rm ϕ(x−y) dµ(y). This case falls within the scope

of Proposition 11 (with F (t, y, z, a) = a and f(y, y′, z) = ϕ(y− y′)), and Corollary 12 additionally gives
a sharp convergence rate.

2.5. Finite dimensional approximation of parabolic PDEs on the Wasserstein space. In this
subsection, we assume that F does not depend on (t, ω). Given four functions B : Rd × P2(Rd)→ Rd,
σ : Rd ×P2(Rd)→ Rd×d, G : Rd ×P2(Rd)→ Rm and F : Rd × Rm × Rm×d ×P2(Rd)×P2(Rm)→ Rm,
we consider the PDE

∂tV (t, x, µ) +B(x, µ)∂xV (t, x, µ) + 1
2tr(∂xxV (t, x, µ)a(x, µ))

+F (x, V (t, x, µ), σ′(x, µ)∂xV (t, x, µ), µ, ν)

+
∫
Rd ∂µV (t, x, µ)(y) ·B(y, µ)dµ(y) +

∫
Rd

1
2tr (∂y∂µV (t, x, µ)(y)a(y, µ)) dµ(y) = 0

V (T, x, µ) = G(x, µ)

(17)

with (t, x, µ) ∈ [0, T )×Rd×P2(Rd), a := σσ′, and ν the law of V (t, ξ, µ) when L(ξ) = µ. The derivative

∂µV (t, x, µ)(y)

denotes the so-called Wasserstein derivative (also called L-derivative) of the function V in the direction of
the probability measure µ, see e.g. [2; 37] or [12, Chapter 5] for details. The goal of this section is to show
that the solution V of the PDE (17), written on the infinite dimensional space [0, T ]×Rd×P2(Rd) can be
approximated by a sequence of solutions of PDEs written on the finite dimensional space [0, T ]× (Rd)n.
More precisely, we will be interested in the system of PDEs
(18)
∂tv

i,n(t,x) +B(xi, L
n(x))∂xiv

i,n(t,x) + 1
2tr
(
∂xixiv

i,n(t,x)a(xi, L
n(x))

)
+F

(
xi, v

i,n(t,x), ∂xiv
i,n(t,x), Ln(x)σ(xi, L

n(x)), 1
n

∑n
j=1 δvj,n(t,x)

)
= 0 with (t,x) ∈ [0, T ]× (Rd)n

vi,n(T,x) = G (xi, L
n(x)) , x = (x1, . . . , xn) ∈ (Rd)n

i = 1, . . . , n.

The following condition is copied almost verbatim from [16]. It guarantees the existence of a unique
classical solution V to (17).

(PDE) The functions σ,B, F and G satisfy the following:
(PDE1) The function σ is bounded, and the functions B, σ, F and G are three times continuously

differentiable in w = (x, y, z) and µ, with bounded and Lipschitz-continuous first and second
derivatives (with common bound and Lipschitz constant denoted LF ).

(PDE2) There exist a constant α ≥ 0 and a function Φα : (L2(Ω,FT , P ;Rd+m))2 3 (χ, χ′) 7→
Φα(χ, χ′) ∈ R+ continuous at any point (χ, χ) of the diagonal and such that

Φα(χ, χ′) ≤ E
[(

1 + |χ|2α + |χ′|2α + ||χ||2α2
)
|χ− χ′|

]1/2
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for all χ, χ ∈ L2(Ω,FT , P ;Rd+m) satisfying L(χ) = L(χ′). Moreover, letting h = B, σ, F or
G, it holds|∂wh(w,L(χ))− ∂wh(w′,L(χ′))| ≤ LF

(
|w − w′|+ Φα(χ, χ′)

)
|∂µh(w,χ)− ∂µh(w′, χ′)| ≤ LF

(
|w − w′|+ Φα(χ, χ′)

)
for all w = (x, y, z), w′ = (x′, y′, z′) and χ, χ′ ∈ L2(Ω,FT , P ;Rd+m). Furthermore, for every
χ ∈ L2(Ω,FT , P ;Rd+m), the family (∂µh(w,χ))w is uniformly integrable.

(PDE3) Letting h = B, σ, F or G, the mapping v 7→ ∂µh(w, µ)(v) is LF -Lipschitz continuous, the
mapping (w, v) 7→ ∂µh(w, µ)(v) is continuously differentiable at any point (w, v) such that
v is in the support of µ, (w, v) 7→ ∂v[∂µh(w, µ)](v) and (w, v) 7→ ∂w[∂µh(w, µ)](v) are
continuous and it holds

E
[
|∂w[∂µh(w,L(χ))](χ)− ∂w[∂µh(w′,L(χ′))](χ′)|2

]1/2
+ E

[
|∂v[∂µh(w,L(χ))](χ)− ∂v[∂µh(w′,L(χ′))](χ′)|2

]1/2 ≤ LF(|w − w′|+ Φα(χ, χ′)
)
.

Under the condition (PDE), we then have the announced convergence of v1,n to V . More precisely, we
have:

Theorem 14. Assume that F does not depend on (t, ω) and that the condition (PDE) is satisfied. Then
the sequence (v1,n)n converges to V in the sense that for every i.i.d. sequence (ξi)i∈N in Lk(Ω,Ft, P ;Rd)
for some k > 4 and every µ ∈ P2(Rd) with L(ξ1) = µ, it holds that

(19) E
[

sup
t∈[0,T ]

|v1,n(t, ξ1, . . . , ξn)− V (t, ξ1, µ)|2
]
≤ CLF ,T,k εn

where εn is defined as

(20) εn =


n−1/2, if d < 4,

n−1/2 log(n), if d = 4,

n−2/d, if d > 4

and CLF ,T,k is a constant depending on LF , T and E[|ξ1|k].
Moreover, for every n ∈ N and every t ∈ [0, T ] it holds that

(21) E
[
|vi,n(t, ξ1, . . . , ξn)− V (t, ξi, L

n(ξ))|2
]
≤ CLF ,T (εn + rn,d,k,2)

with ξ := (ξ1, . . . , ξn), where CLF ,T depends on the Lipschitz constant LF of B,F and G and on T , and
rn,d,k,2 is defined by (4).

3. Proofs

In this final section we give detailed proofs of the results presented above. We start by justifying
well-posedness of (2) and (1). For simplicity of notation, we will put

Zi,n := Zi,i,n

whenever this does not cause confusions.
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Proof of Remark 1. By [12, Theorem 4.23], the equation (2) admits a unique solution (Y,Z) solution in
the space S2(Rm)×H2(Rm×d), where we use the notation: for each integer k ≥ 1,

S2(Rk) :=

{
Y ∈ H0(Rk)

∣∣∣E sup
0≤t≤T

|Yt|2 < +∞

}
and H2(Rk) :=

{
Z ∈ H0(Rk)

∣∣∣E ∫ T

0
|Zt|2dt < +∞

}
,

with H0(Rk) being the space of all Rk-valued progressively measurable processes.
Moreover, we can apply [19, Theorem 2.1] to the system (1) to justify the existence and uniqueness

of a solution. To that end, it helps to write it in the more compact form

(22) Yt = G +

∫ T

t
Fu(Yu,Zu) du−

∫ T

t
Zu dWu,

where G(ω) := (G1(ω1), . . . , Gn(ωn)), ω := (ω1, . . . , ωn),

Y := (Y i,n)i=1,...,n, Zi,n := (Zi,1,n, . . . , Zi,n,n), W = (W i)i=1,...,n

Z := diag(Zi,n)i=1,...,n and F : [0, T ]× Ωn × (Rm)n × (Rm×d)n → (Rm)n is defined by

F(t,ω,y, z) = (Ft(ω
i, yi, zi,i, Ln(y)))i=1,...,n

for t ∈ [0, T ],y = (y1, . . . , yn) ∈ (Rm)n, z = (z1, . . . , zn) ∈ (Rm×d)n and ω := (ω1, . . . , ωn) ∈ Ωn. Now
it suffices to check that the function F is (8LF )-Lipschitz continuous (the Lipschitz constant does not
depend on n). We do this for the reader’s convenience. For every t ∈ [0, T ],y1,y2 ∈ (Rm)n, z1, z2 ∈
(Rm×d)n it holds that

|F(t,y1, z1)− F(t,y2, z2)|2 =

n∑
i=1

|Ft(yi1, z
i,i
1 , L

n(y1))− Ft(yi2, z
i,i
2 , L

n(y2))|2

≤ LF
n∑
i=1

(
|yi1 − yi2|+ |z

i,i
1 − z

i,i
2 |+Wp(L

n(y1), Ln(y2))
)2

≤ LF
n∑
i=1

(
|yi1 − yi2|+ |z

i,i
1 − z

i,i
2 |+W2(Ln(y1), Ln(y2))

)2

≤ 4LF

n∑
i=1

|yi1 − yi2|2 + |zi,i1 − z
i,i
2 |

2 +
1

n

n∑
j=1

|yj1 − y
j
2|

2


≤ 8LF

(
|y1 − y2|2 + |z1 − z2|2

)
.

To derive these inequalities, we successively used assumption (Lipp), the fact that Wp(µ, ν) ≤ W2(µ, ν)
for any p ∈ [1, 2], and the fact thatW2, for two n-sample empirical distributions Ln(y1), Ln(y2) is given
by

W2(Ln(y1), Ln(y2)) = min
σ

(
1

n

n∑
i=1

|yσ(i)
1 − yi2|2

)1/2

,

where the minimum is over permutations σ of {1, . . . , n}, see e.g. [9, Lemma 5.1.7]. �
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3.1. Proofs for Subsection 2.2. We begin with two moment estimates for the solution of the McKean-
Vlasov BSDE. Given a square integrable progressive process q, we will denote by

Es,t(q ·W ) := exp

(∫ t

s
qu dWu −

1

2

∫ t

s
|qu|2 du

)
the stochastic exponential of q, and for every measure µ ∈ Pp(Rm), we let

Mp(µ) :=

∫
Rm

|x|p dµ

be the pth-moment of µ.

Lemma 15. Let k ≥ 2. Assume E[|G|k] <∞ and that F satisfies (Lipp) for some p ∈ [1, 2]. Then, for
all q ≥ 0, if q = 2 or q < k, the solution (Y,Z) of (2) satisfies

sup
t
E[|Yt|q] <∞.

Proof. If q = 2, there is nothing to prove because the result follows from Remark 1. Let us assume
q < k. Since F is Lipschitz continuous in the z-variable, it is almost everywhere differentiable. Thus, it
follows from the mean-value theorem that

Yt = G+

∫ T

t

(
Fu(Yu, Zu,L(Yu))− Fu(Yu, 0,L(Yu)) + Fu(Yu, 0,L(Yu))

)
du−

∫ T

t
Zu dWu

= G+

∫ T

t

(∫ 1

0
∂zFu(Yu, λZu,L(Yu)) dλZu + Fu(Yu, 0,L(Yu))

)
du−

∫ T

t
Zu dWu

= EQ

[
G+

∫ T

t
Fu(Yu, 0,L(Yu)) du | Ft

]
where we used Girsanov’s theorem, with Q being the probability measure with density dQ/dP :=
E0,T (γ ·W ) and

γu :=

∫ 1

0
∂zFu(Yu, λZu,L(Yu)) dλ.

Hence, using the linear growth of F we obtain

|Yt|q ≤ CF,k,qEQ
[
|G|q +

∫ T

t

(
1 + |Yu|q +M

q/2
2 (L(Yu))

)
du | Ft

]
for a constant CF,k,q depending only on k and F . Thus, by Gronwall’s inequality we have

|Yt|q ≤ eCF,k,qTCF,k,qEQ

[
|G|q + sup

u∈[0,T ]
M2(L(Yu))q/2 + T | Ft

]

≤ eCF,k,qTCF,k,qE
[
Et,T (γ ·W )k/(k−q) | Ft

](k−q)/k
E
[
|G|k | Ft

]q/k
+ CF,k,q(T + sup

u∈[0,T ]
M2(L(Yu))q/2).

Note that, since γ is a bounded process, the random variable Et,T (γ ·W ) has moments of all orders.
Furthermore, supu∈[0,T ]M2(L(Yu)) <∞ since Y ∈ S2(Rm), see Remark 1. Therefore, taking expectation
on both sides and applying again Hölder’s inequality concludes the argument. �
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Lemma 16. Let k ≥ 3. Assume that E[|G|k′ ] <∞ for some k′ > 2k and that F satisfies (Lipp) for some

p ∈ [1, 2]. Assume that the solution (Y,Z) of (2) is such that suptE[|Zt|2k] <∞. Let 0 ≤ t1 ≤ t2 ≤ T
be such that t2 − t1 ≤ 1. Then we have

(i) E[|Yt − Ys|k|Ys − Yr|k] ≤ C|t− r|2 for some C ≥ 0 and for all t1 ≤ r < s < t ≤ t2.
(ii) E[|Yt − Ys|k] ≤ C|t− s| for some C ≥ 0 and for every t1 ≤ s ≤ t ≤ t2.

Proof. Let us start with the proof of (i). A direct estimation and repeated applications of Hölder’s
inequality yield

E
[
|Yt − Ys|k|Ys − Yr|k

]
≤ 22k−2(s− r)(k−1)(t− s)(k−1)E

[∫ s

r
|Fu(Yu, Zu,L(Yu))|k du

∫ t

s
|Fu(Yu, Zu,L(Yu))|k du

]
+ 22k−2(s− r)(k−1)E

[∫ s

r
|Fu(Yu, Zu,L(Yu))|k du

∣∣∣∣∫ t

s
Zu dWu

∣∣∣∣k
]

+ 22k−2(t− s)(k−1)E

[∫ t

s
|Fu(Yu, Zu,L(Yu))|k du

∣∣∣∣∫ s

r
Zu dWu

∣∣∣∣k
]

+ 22k−2E

[∣∣∣∣∫ s

r
Zu dWu

∣∣∣∣2k
]1/2

E

[∣∣∣∣∫ t

s
Zu dWu

∣∣∣∣2k
]1/2

.

Now, recall that by Lemma 15, it holds supt∈[0,T ]E[|Yt|2k] < ∞, supt∈[0,T ]M2(L(Yt)) < ∞ and by

assumption, that suptE[|Zt|2k] <∞. Thus, by the linear growth condition on F and Burkholder-Davis-
Gundy inequality, we have

E
[
|Yt − Ys|k|Ys − Yr|k

]
≤ 22kLFT (t− r)2(k−1)E

[∫ T

0

(
1 + |Yu|2k + |Zu|2k +M2k

2 (L(Yu))
)
du

]

+ 22kLF (t− r)(k−1)E

[∫ s

r

(
1 + |Yu|2k + |Zu|2k +M2k

2 (L(Yu))
)]1/2

E

[(∫ t

s
|Zu|2 du

)k]1/2

+ 22kLF (t− r)(k−1)E

[∫ t

s

(
1 + |Yu|2k + |Zu|2k +M2k

2 (L(Yu))
)]1/2

E

[(∫ s

r
|Zu|2 du

)k]1/2

+ 22kE

[(∫ s

r
|Zu|2 du

)k]1/2

E

[(∫ t

s
|Zu|2 du

)k]1/2

≤ 22kCF,T (t− r)2(k−1) + 22kCF,T (t− r)(k−1)(s− t)k−1 + 22kCF,T (t− r)(k−1)(t− s)k−1

+ CF,T 22k
[
(s− r)k−1(t− s)k−1

]1/2

≤ CF,T (t− r)k−1.

Since k ≥ 3 and t− r ≤ 1, we can conclude from the above that

E
[
|Yt − Ys|k|Ys − Yr|k

]
≤ Ck,T,F |t− r|2,
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where Ck,T,F is a constant depending on k, T , LF and the 2kth moments of Y and Z. This proves the
first claim.

Let us turn to the proof of the second claim, which is similar (and simpler). In fact, arguing as above
we get

E
[
|Yt − Ys|k

]
≤ 2k−1E

[∣∣∣∣∫ t

s
Fu(Yu, Zu,L(Yu)) du

∣∣∣∣k +

∣∣∣∣∫ t

s
Zu dWu

∣∣∣∣k
]

≤ 2k(t− s)(k−1)E

[∫ t

s
|Fu(Yu, Zu,L(Yu))|k du

]
+ 2kE

[(∫ t

s
|Zu|2 du

)k/2]
≤ 2kLF (t− s)(k−1) + 2kC(t− s)(k−1)/2 ≤ CF,T |t− s|,

where we used the facts that t− s ≤ 1 and k ≥ 3.
In the case that F is bounded in z the argument is exactly the same. Since the terms |Zt|2k will not

appear in the estimates we can conclude without assumptions on the moments of Z. �

Next, we will adapt to BSDEs a well-known coupling technique that will allow to use some known
quantitative bounds for i.i.d. samples in our interacting particles case. This coupling technique, which
probably originated from the work of Sznitman [44], is by now standard in SDE theory, see e.g. [18;
11] for recent references. Hence, let (Y,Z) be the solution of the McKean-Vlasov BSDE (2). Let

(Ỹ 1, Z̃1), . . . (Ỹ n, Z̃n) be i.i.d. copies of (Y, Z) such that for each i, (Ỹ i, Z̃i) solves the equation

(23) Ỹ i
t = Gi +

∫ T

t
Fu(Ỹ i

u, Z̃
i
u,L(Yu)) du−

∫ T

t
Z̃iu dW

i
u.

Such copies can be found because the McKean-Vlasov BSDE has a unique solution, and thus we have
uniqueness in law. We let Ỹ = (Ỹ 1, . . . , Ỹ n).

Lemma 17. Let p ∈ [0, 1]. Assume that E[|G1|2] <∞ and that F satisfies (Lipp). Then it holds that

(24) Wp(L
n(Yt),L(Yt)) ≤ exp(TeLFT )Wp(L

n(Ỹt),L(Yt)) P -a.s.

for all (t, n) ∈ [0, T ]× N.

Proof. Let i ∈ {1, . . . , n} be fixed. It follows by the mean-value theorem that

Ỹ i
t − Y

i,n
t =

∫ T

t

[
Fu(Ỹ i

u, Z̃
i
u,L(Yu))− Fu(Y i,n

u , Zi,i,nu , Ln(Yu))
]
du−

n∑
j=1

∫ T

t

(
δijZ̃

i
u − Zi,j,nu

)
dW j

u

=

∫ T

t

[
αiu + βiu +

∫ 1

0
∂zFu(Y i,n

u , Zi,i,nu + λ(Z̃iu − Zi,i,nu ),L(Yu)) dλ(Z̃iu − Zi,i,nu )

]
du

−
n∑
j=1

∫ T

t

(
δijZ̃

i
u − Zi,j,nu

)
dW j

u

with δij = 1 if i = j and δij = 0 otherwise, αiu := Fu(Ỹ i
u, Z̃

i
u,L(Yu)) − Fu(Y i,n

u , Z̃iu,L(Yu)) and βiu :=

Fu(Y i,n
u , Zi,i,nu ,L(Yu))−Fu(Y i,n

u , Zi,i,nu , Ln(Yu)). Note that since F is Lipschitz continuous, the derivative
∂zF can be defined almost everywhere, and is bounded. Thus, the density process

E0,t(γ ·W i) with γu :=

∫ 1

0
∂zFu(Y i,n

u , Zi,i,nu + λ(Z̃iu − Zi,nu ),L(Yu)) dλ
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defines an equivalent probability measure Q. Due to Girsanov’s theorem and square integrability of
Zi,j,n and Z̃i, taking the expectation above with respect to Q yields

Ỹ i
t − Y

i,n
t = EQ

[∫ T

t
(αiu + βiu) du | Fnt

]
.(25)

Again by Lipschitz continuity of F , it holds that

|αiu|+ |βiu| ≤ LF
(
|Ỹ i
u − Y i,n

u |+Wp(L
n(Yu),L(Yu))

)
so that by Gronwall’s inequality, we have

|Ỹ i
t − Y

i,n
t | ≤ eLFTEQ

[∫ T

0
Wp(L

n(Yu),L(Yu)) du | Fnt
]
.

Hence, using the definition of the pth-Wasserstein distance, we obtain the estimate

Wp(L
n(Yt), L

n(Ỹt)) ≤

(
1

n

n∑
i=1

|Ỹ i
t − Y i

t |p
)1/p

≤ eLFTEQ

[∫ T

0
Wp(L

n(Yu),L(Yu)) du | Fnt
]
.

Now, combine this with the triangle inequality to obtain

Wp(L
n(Yt),L(Yt)) ≤ Wp(L

n(Yt), L
n(Ỹt)) +Wp(L

n(Ỹt),L(Yt))

≤ eLFTEQ

[∫ T

0
Wp(L

n(Yu),L(Yu)) du | Fnt
]

+Wp(L
n(Ỹt),L(Yt)).(26)

Applying again Gronwall’s inequality yields the desired result. �

With the proofs of the above lemmas aside, we are ready to prove quantitative estimations for the
convergence of the empirical measure of Yt to the law L(Yt) of the McKean-Vlasov BSDE.

Proof of Theorem 2 and Proposition 5. The proofs begin with Lemma 17. In fact this lemma implies
that

(27) E
[
Wp
p (Ln(Yt),L(Yt))

]
≤ exp(TeLFT )E

[
Wp
p (Ln(Ỹt),L(Yt))

]
for all (t, n) ∈ [0, T ]× N.

Since E[|Gi|k] <∞ with k > p, we have by Lemma 15 that supt∈[0,T ]E[|Yt|q] <∞ for q ∈ (p, k). Thus,

it follows by [20, Theorem 1] that

E
[
Wp
p (Ln(Ỹt),L(Yt))

]
≤ Crn,m,k,p

for a constant C depending on LF , T,m, p and k. Therefore, the estimate (3) is obtained due to (27).
To get the estimate (6), let 0 = t0 ≤ t1 ≤ · · · ≤ tN = T be a partition of [0, T ] in N intervals of

length tj+1 − tj ≤ 1 (if T ≤ 1 we simply take N = 1). Considering the decomposition

Wp
p (Ln(Yt),L(Yt)) =Wp

p (Ln(Y0),L(Y0))1{0}(t) +
N−1∑
j=0

Wp
p (Ln(Yt),L(Yt))1(tj ,tj+1](t) for all t ∈ [0, T ],

we have

(28) E
[

sup
t∈[0,T ]

Wp
p (Ln(Yt),L(Yt))

]
≤

N−1∑
j=0

E
[

sup
t∈[tj ,tj+1]

Wp
p (Ln(Yt),L(Yt))

]
.

From Lemma 17 we have
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E
[

sup
t∈[tj ,tj+1]

Wp
p (Ln(Yt),L(Yt))

]
≤ exp(pTeLFT )E

[
sup

t∈[tj ,tj+1]
Wp
p (Ln(Ỹt),L(Yt))

]
for all n ∈ N, j ≤ N−1.

Since p ∈ [1, 2], it follows by Jensen’s inequality and the inequality Wp ≤ W2 that for all n ∈ N,

E

[
sup

t∈[tj ,tj+1]
Wp
p (Ln(Yt),L(Yt))

]2/p

≤ e2LFTE

[
sup

t∈[tj ,tj+1]
W2

2 (Ln(Ỹt),L(Yt))

]
(29)

Since tj+1 − tj ≤ 1, Lemma 16 applies, in view of which it follows from Lemma 15 and [24, Theorem
1.3] that

E
[

sup
t∈[tj ,tj+1]

W2
2 (Ln(Ỹt),L(Yt))

]
≤ CG,F,k,mn−2/(m+8).

Therefore, we deduce from (29) and (28) that

E
[

sup
t∈[0,T ]

Wp
p (Ln(Yt),L(Yt))

]
≤ NepLFTCG,F,k,mn

−p/(m+8).

This concludes the proof, since N can be chosen less than T + 1. �

Proof of Remark 4. The proof is the same as that of the estimate (3) with application of [24, Theorem
1.2] instead of [20, Theorem 1]. �

3.2. Proof of Theorem 7. The proofs of Theorem 7 and Proposition 11 partially rely on functional
inequalities that we now recall for the reader’s convenience. See however [45, Chapters 21 & 22] for
further details.

Let W2,δ denote the Wasserstein distance of order 2 with respect to a distance δ on a Polish space
E. A probability measure µ ∈ P(E) is said to satisfy Talagrand’s T2 inequality with constant C if

W2,δ(µ, ν) ≤
√
CH(ν|µ) for every probability measure ν,

where H is the Kullback-Leibler divergence defined as

H(ν|µ) :=

{∫
log( dνdµ)dν, if ν � µ

+∞, otherwise,

with the convention E[X] := ∞ whenever E[X+] = ∞. Below, we will exploit the efficiency of Tala-
grand’s inequality in deriving concentration inequalities, but also the fact that it implies other functional
inequalities, notably the T1 inequality

W1,δ(µ, ν) ≤
√
CH(ν|µ) for every probability measure ν,

and Poincaré’s inequality

Var(f) ≤ C
∫
E
|∇f |2 dµ

for every (weakly) differentiable function f : E → R and where Var(f) is the variance with respect to
the probability measure µ.
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Proof of Theorem 7. The proof of the first concentration bound also uses Lemma 17. For simplicity, let
CF,T = exp(TeLFT ) denote the constant factor appearing in the right hand side of (24). It follows by
(24) that

P (Wp(L
n(Yt),L(Yt)) ≥ ε) ≤ P

(
Wp(L

n(Ỹt),L(Yt)) ≥ ε/CF,T
)
.

Fix k > 2p such that E[|G|k] < ∞, let q ∈ (2p, k). By Lemma 15, we have E[|Yt|q] < ∞ and thus we
can apply [20, Theorem 2], to obtain the inequality

P
(
Wp(L

n(Ỹt),L(Yt)) ≥ εF,T
)
≤ C(an,εF,T 1{εF,T≤1} + bn,εF,T ),

where εF,T = ε/CF,T . This concludes the proof of (7).
As for the proof of (8), consider the representation of the system (1) given in (22) on the probability

space (Ωn,Fn, P ). Since Gi is Lipschitz continuous for each i, it is easily checked that the random
variable G is again LG-Lipschitz continuous. In fact, given ω,θ ∈ Ωn, we have

|G(ω)−G(θ)|2 =

n∑
i=1

|Gi(ωi)−Gi(θi)|2 ≤ LG
n∑
i=1

||ωi − θi||2∞ = LG||ω − θ||2∞,

where for every ω ∈ Ωn, ||ω||∞ = supt∈[0,T ]

(∑n
i=1 |ωi(t)|2

)1/2
. Similarly, one shows that the function

F is LF -Lipschitz continuous. In particular, the Lipschitz constants of F and G do not depend on n.
By [3, Theorem 1.2], the law of Yt satisfies Talagrand’s T2-inequality with the constant

CF,G,T := 2(LG + TLF )2e2TLF .

Thus, it follows by [23, Theorem 1.3] that there is a constant C > 0 such that for every 1-Lipschitz
continuous functions f : C([0, T ],Rm)n → R we have

P (f(Y)− E[f(Y)] ≥ ε) ≤ e−ε2C .

The function ω := (ω1, . . . ωn) 7→
√
nW2,||·||∞(Ln(ω),L(Y )) is 1-Lipschitz continuous on Ωn. Thus, we

have

P
(
W2,‖·‖∞(Ln(Y),L(Y ))− E[W2,‖·‖∞(Ln(Y),L(Y ))] ≥ ε

)
≤ e−Cε2n,(30)

from which we deduce (8).
Lastly, we turn to the proof of (9). If F does not depend on z, we do not need the change of measure

to get (25). In fact, a direct estimation yields

Ỹ i
t − Y

i,n
t = E

[∫ T

t

(
Fu(Ỹ i

u,L(Yu))− Fu(Y i,n
u , Ln(Yu))

)
du | Fnt

]
.

By Lipschitz continuity of F and Gronwall’s inequality we have

|Ỹ i
t − Y

i,n
t |2 ≤ e2TLFE

[ ∫ T

t
W2(Ln(Yu),L(Yu)) du | Fnt

]2
.(31)
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Thus, it follows by triangle inequality and definition of Wasserstein distance with respect to the supre-
mum norm that

W2
2,||·||∞(Ln(Y),L(Y )) ≤ W2

2,||·||∞(Ln(Y), Ln(Ỹ)) +W2
2,||·||∞(Ln(Ỹ),L(Y ))

≤ sup
t∈[0,T ]

1

n

n∑
i=1

|Ỹ i
t − Y

i,n
t |2 +W2

2,||·||∞(Ln(Ỹ),L(Y ))

≤ sup
t∈[0,T ]

e2TLFE
[ ∫ T

0
W2(Ln(Yu),L(Yu)) du | Fnt

]2
+W2

2,||·||∞(Ln(Ỹ),L(Y ))

where the last inequality follows from (31). Hence, it follows by Doob’s maximal inequality that

E
[
W2

2,||·||∞(Ln(Y),L(Y ))
]
≤ e2TLF TE

[ ∫ T

0
W2

2 (Ln(Yu),L(Yu)) du
]

+ E
[
W2

2,||·||∞(Ln(Ỹ),L(Y ))
]

≤ Crn,m,k,2 + E
[
W2

2,||·||∞(Ln(Ỹ),L(Y ))
]
,

for some q ∈ (p, k) where the last inequality follows by Fubini’s theorem and Theorem 2. Since Ỹ =

(Ỹ 1, . . . , Ỹ n), are i.i.d., it holds E
[
W2

2,||·||∞(Ln(Ỹ),L(Y ))
]
→ 0 as n goes to infinity. Thus, there is and

integer ñ0 large enough such that for all n ≥ ñ0 we have E
[
W2

2,||·||∞(Ln(Ỹ),L(Y ))
]
≤ Crn,m,k,2. Hence,

we have

(32) E
[
W2

2,||·||∞(Ln(Y),L(Y ))
]
≤ Crn,m,k,2

for n ≥ ñ0. Now, by (30), it holds that

P
(
W2,||·||∞(Ln(Y),L(Y )) ≥ ε

)
≤ P

(
W2,‖·‖∞(Ln(Y),L(Y ))− E[W2,‖·‖∞(Ln(Y),L(Y ))] ≥ ε/2

)
+ P

(
E
[
W2,||·||∞(Ln(Ỹ),L(Y ))

]
≥ ε/2

)
≤ e−Cε2n + P

(
E
[
W2,||·||∞(Ln(Ỹ),L(Y ))

]
≥ ε/2

)
.

In view of (32) and the fact that rn,m,k,p ↓ 0 as n goes to infinity, we can choose n0 ≥ ñ0 large enough
such that for all n ≥ n0

P
(
E
[
W2,||·||∞(Ln(Ỹ),L(Y ))

]
≥ ε/2

)
= 0.

This concludes the proof of (9). �

3.3. Proofs for Subsection 2.4. We begin with the proof of Theorem 8. As we will see below, this
result is obtained as a consequence of Theorem 2.

Proof of Theorem 8. Since Y 1,n and Y 1 satisfy (1) and (2) respectively, we have

Y 1,n
t − Y 1

t = E

[∫ T

t

(
Fu(Y 1,n

u , Z1,n
u , Ln(Yu))− Fu(Y 1

u , Z
1
u,L(Yu))

)
du | Fnt

]
so that by Lipschitz continuity of F , and Gronwall’s inequality it holds

|Y 1,n
t − Y 1

t | ≤ eLFTE

[∫ T

t
LF
(
W2(Ln(Yu),L(Yu)) + |Z1,n

u − Z1
u|
)
du | Fnt

]
.
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Therefore, it follows by Doob’s maximal inequality that

E

[
sup
t∈[0,T ]

|Y 1,n
t − Y 1

t |2
]
≤ L2

F e
2LFTE

[
sup
t∈[0,T ]

E

[∫ T

0

(
W2(Ln(Yu),L(Yu)) + |Z1,n

u − Z1
u|
)
du | Fnt

]2
]

≤ L2
F e

2LFTE

[(∫ T

0

(
W2(Ln(Yu),L(Yu)) + |Z1,n

u − Z1
u|
)
du

)2
]

≤ 2L2
FTe

2LFT

(∫ T

0
E
[
W2

2 (Ln(Yu),L(Yu))
]
du+ E

[∫ T

0
|Z1,n
u − Z1

u|2 du
])

.(33)

On the other hand, applying Itô’s formula to the process |Y 1,n
t − Y 1

t |2, we have

|Y 1,n
t − Y 1

t |2 = −2
n∑
j=1

∫ T

t
(Y 1,n
s − Y 1

s )(Z1,j,n
s − δ1jZ

1
s )dW j

s

−
n∑

j,l=1

∫ T

t
(Z1,j,n

s − δ1jZ
1
s )(Z1,l,n

s − δ1lZ
1
s )d〈W j ,W l〉s

+ 2

∫ T

t
(Y 1,n
s − Y 1

s )
{
Fs(Y

1,n
s , Z1,1,n

s , Ln(Ys))− Fs(Y 1
s , Z

1
s ,L(Y 1

s ))
}
ds.

By Lipschitz continuity of F we then have

|Y 1,n
t − Y 1

t |2 +
n∑

j,l=1

∫ T

t
(Z1,j,n

s − δ1jZ
1
s )(Z1,l,n

s − δ1lZ
1
s )d〈W j ,W l〉s

≤ −2

n∑
j=1

∫ T

t
(Y 1,n
s − Y 1

s )(Z1,j,n
s − δ1jZ

1
s )dW j

s

+ 2

∫ T

t
LF |Y 1,n

s − Y 1
s ||Z1,1,n

s − Z1
s |ds+ 2

∫ T

t
LF |Y 1,n

s − Y 1
s |2ds

+ 2

∫ T

t
LF |Y 1,n

s − Y 1
s |W2(Ln(Ys),L(Y 1

s )) ds

≤ −2
n∑
j=1

∫ T

t
(Y 1,n
s − Y 1

s )(Z1,j,n
s − δ1jZ

1
s )dW j

s +

∫ T

t

LF
α
|Z1,1,n
s − Z1

s |2ds

+

∫ T

t
(3α+ LF )|Y 1,n

s − Y 1
s |2ds+

∫ T

t
LFW2

2 (Ln(Ys),L(Y 1
s )) ds,(34)

where the last inequality follows by Young’s inequality with some constant α > 0. Choosing α = LF +1,
we obtain

|Y 1,n
t − Y 1

t |2 ≤ E
[∫ T

t
(4 + LF )LF |Y 1,n

s − Y 1
s |2ds+

∫ T

t
LFW2

2 (Ln(Ys),L(Y 1
s )) ds | Fnt

]
so that by Gronwall’s inequality we have that

(35) |Y 1,n
t − Y 1

t |2 ≤ e(4+LF )LFTE

[∫ T

t
LFW2

2 (Ln(Yu),L(Y 1
u )) du | Fnt

]
.
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Now, integrating on both sides yields

E
[
|Y 1,n
t − Y 1

t |2
]
≤ e(4+LF )LFTE

[∫ T

0
LFW2

2 (Ln(Yu),L(Y 1
u )) du

]
≤ e(4+LF )LFTLF

∫ T

0
E
[
W2

2 (Ln(Yu),L(Y 1
u ))
]
du(36)

from which we derive, due to Theorem 2, that

(37) E
[
|Y 1,n
t − Y 1

t |2
]
≤ e(4+LF )LFTLFTC rn,m,q,2

with q ∈ (2, k).
To get the convergence estimate for the control processes Z1,n, notice that by (34) (with the choice

α = LF + 1), we have

E

[∫ T

0
|Z1,n
u − Z1

u|2 du
]
≤ (LF + 1)E

[
(4 + LF )LF

∫ T

0
|Y 1,n
u − Y 1

u |2 du+ LF

∫ T

0
W2

2 (Ln(Yu),L(Y 1
u )) du

]
≤ (LF + 1)

(
(4 + LF )LF

∫ T

0
E
[
|Y 1,n
u − Y 1

u |2
]
du

+ LF

∫ T

0
E
[
W2

2 (Ln(Yu),L(Y 1
u ))
]
du
)
.(38)

Now combine this with the inequalities (33), (37) and Theorem 2 to conclude. �

We now turn to the particular case of systems with linear interaction. Unlike Theorem 8, the proof
of Proposition 11 does not follow from the convergence of the empirical measure of Y, but by a direct
argument which seems tailor-made for “linear interaction functions”. Before presenting the proof, let
us justify the well-posedness of the system.

Proof of Remark 10. The existence and uniqueness of square integrable solutions follows, as in the non-
linear interaction case, from [19] for the system (12) and [12, Theorem 4.23] for the McKean-Vlasov
BSDE (13). It suffices to show that the generators are Lipschitz continuous (with Lipschitz constant
independent of n). We give only the argument for the McKean-Vlasov equation. Let y, y′ ∈ Rm,
z, z′ ∈ Rm×d and µ, µ′ ∈ P(Rm). By (Lip) we have

|F (y, z, µ)− F (y′, z′, µ′)| ≤ LF
(
|y − y′|+ |z − z′|+ |

∫
Rm

f(y, a, z)µ(da)−
∫
Rm

f(y′, a, z′)µ′(da)|
)

≤ LF
(
|y − y′|+ |z − z′|+ Lf

∣∣∣∣∫
Rm

1

Lf
f(y, a, z)µ(da)−

∫
Rm

1

Lf
f(y, a, z)µ′(da)

∣∣∣∣
+

∣∣∣∣∫
Rm

f(y, a, z)µ′(da)−
∫
Rm

f(y′, a, z′)µ′(da)

∣∣∣∣ )
≤ LF

(
|y − y′|+ |z − z′|+ LfW1(µ, µ′) + Lf

∫
Rm

(|y − y′|+ |z − z′|)µ(da)
)

≤ max(LF , LFLf , Lf )
(
|y − y′|+ |z − z′|+W2(µ, µ′)

)
.

To derive the penultimate inequality, we used Kantorovich-Rubinstein duality formula. �
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Proof of Proposition 11. It follows by application of Itô’s formula that

|Y 1,n
t − Y 1

t |2 +

n∑
j,l=1

∫ T

t
(Z1,j,n

s − δ1jZ
1
s )(Z1,l,n

s − δ1lZ
1
s )d〈W j ,W l〉u ≤

− 2
n∑
j=1

∫ T

t
(Y 1,n
u − Y 1

u )(Z1,j,n
u − δ1,jZ

1
u)dW j

u + 2

∫ T

t
(Y 1,n
u − Y 1

u )

Fu(Y 1,n
u , Z1,n

u ,
1

n

n∑
j=1

fu(Y 1,n
u , Y j,n

u , Z1,n
u )
)

− Fu
(
Y 1
u , Z

1
u,

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)
))

du

≤ −2

n∑
j=1

∫ T

t
(Y 1,n
u − Y 1

u )(Z1,j,n
u − δ1jZ

1
u)dW j

u + LF

∫ T

t

1

α
|Z1,n
u − Z1

u|2 du+ LF

∫ T

t
(2α+ 2)|Y 1,n

u − Y 1
u |2 du

+ LF

∫ T

t

1

α

∣∣∣∣∣∣ 1n
n∑
j=1

fu(Y 1,n
u , Y j,n

u , Z1,n)−
∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

∣∣∣∣∣∣
2

du

(39)

where the last inequality follows by Young’s inequality with some constant α > 0. Let us analyze the
last term above. It follows by triangle inequality that

∣∣∣∣∣∣ 1n
n∑
j=1

fu(Y 1,n
u , Y j,n

u , Z1,n)−
∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣ 1n
n∑
j=1

{
fu(Y 1,n

u , Y j,n
u , Z1,n

u )− fu(Y 1
u , Y

j,n
u , Z1,n

u )
}∣∣∣∣∣∣

2

+ 4

∣∣∣∣∣∣ 1n
n∑
j=1

(
fu(Y 1

u , Y
j,n
u , Z1,n

u )− fu(Y 1
u , Y

j
u , Z

1,n
u )
)∣∣∣∣∣∣

2

+ 8

∣∣∣∣∣∣ 1n
n∑
j=1

(
fu(Y 1

u , Y
j
u , Z

1,n
u )− fu(Y 1

u , Y
j
u , Z

1
u)
)∣∣∣∣∣∣

2

+ 8

∣∣∣∣∣∣ 1n
n∑
j=1

(
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

)∣∣∣∣∣∣
2

≤ Lf
{

2|Y 1,n
u − Y 1

u |2 + 8|Z1,n
u − Z1

u|2
}

+ 4Lf
1

n

n∑
j=1

|Y j,n
u − Y j

u |2

+
8

n2

∣∣∣∣∣∣
n∑
j=1

[
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

]∣∣∣∣∣∣
2

.
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Coming back to (39), this allows to obtain, after taking conditional expectation with respect to the
sigma algebra Fnt ,

|Y 1,n
t − Y 1

t |2 + E

[∫ T

t
|Z1,n
s − Z1

s |2ds | Fnt
]

≤ E
[∫ T

t

{
(LF (2α+ 2) +

2Lf
α

)|Y 1,n
u − Y 1

u |2 +
8Lf + LF

α
|Z1,n
u − Z1

u|2
}
du | Fnt

]

+
4Lf
α
E

 1

n

n∑
j=1

∫ T

t
|Y j,n
u − Y j

u |2 du | Fnt


+

8

αn2
E

∫ T

t

∣∣∣∣∣∣
n∑
j=1

[
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

∣∣∣∣2
 du | Fnt

 .

Choose α = 8Lf + LF + 1. Then, we have

α|Y 1,n
t − Y 1

t |2 + E

[∫ T

t
|Z1,n
s − Z1

s |2ds | Fnt
]

≤ αE
[∫ T

t

{
(LF (2α+ 2) + 1)|Y 1,n

u − Y 1
u |2
}
du | Fnt

]

+ 4LfE

 1

n

n∑
j=1

∫ T

t
|Y j,n
u − Y j

u |2 du | Fnt


+

8

n2
E

∫ T

t

∣∣∣∣∣∣
n∑
j=1

[
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

]∣∣∣∣∣∣
2

du | Fnt

 .(40)

Since E[|Y 1,n
t − Y 1

t |2] = E[|Y j,n
t − Y j

t |2] for all j we can apply Gronwall’s inequality to get

|Y 1,n
t − Y 1

t |2 ≤
CT,F,f
n2

E

∫ T

0

∣∣∣∣∣∣
n∑
j=1

[
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

]∣∣∣∣∣∣
2

du | Fnt


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for a constant CT,F,f depending only on T, Lf and LF . Now, denoting by f ` the `th component of f

and using that Y i
u and Y j

u have the same law we deduce that

E
[
|Y 1,n
t − Y 1

t |2
]
≤
CT,F,f
n2

E

∫ T

0

∣∣∣∣∣∣
n∑
j=1

[
fu(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

]∣∣∣∣∣∣
2

du


≤
CT,F,f
n2

∫ T

0
E

[
m∑
`=1

n∑
j,k=1

(
f `u(Y 1

u , Y
j
u , Z

1
u)−

∫
Rm

f `u(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)
)

×
(
f `u(Y 1

u , Y
k
u , Z

1
u)−

∫
Rm

f `u(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)
)]

du

≤
CT,F,f
n2

∫ T

0

n∑
j=1

E

[∣∣∣∣fu(Y 1
u , Y

j
u , Z

1
u)−

∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

∣∣∣∣2
]

=
CT,F,f
n2

∫ T

0

n∑
j=1

E
[
Var(fu(Y 1

u , Y
j
u , Z

1
u))
]
du.

The equality before the last one follows from the fact that Y i
t , j = 1, . . . , n are i.i.e. for all t. Since

the law L(Y 1
u ) of Y 1

u satisfies Talagrand’s T2 inequality with a constant CF,f,G,T which depends only on
the Lipschitz constants of F, f and G and of T (and which does not depend on the dimensions) (see [3,
Theorem 1.3]) it follows e.g. by [45, Theorem 22.17] (see also [40, Section 7]) that L(Y 1

u ) satisfies the
Poincaré inequality with the same constant. That is, it holds that

Var(fu(x, Y j
u , z)) ≤ CF,f,G,T

∫
Rm

|∂yfu(x, y, z)|2 dL(Y j
u )(y) for all x, z fixed.

Since f is Lipschitz continuous, L2
f is an upper bound for the integral in the right hand side above

(uniformly in x, z). Therefore, we have

E
[
|Y 1,n
t − Y 1

t |2
]
≤

n∑
j=1

C

n2

∫ T

0
E

[∫
Rm

|∂yfu(Y j
u , y, Z

1
u)|2 dL(Y j

u )(y)

]
du

≤ C

n

for some constant C depending on T, LF Lf and the Lipschitz constant of G.

Now, showing that E[
∫ T

0 |Z
1,n
u − Z1

u|2 du] ≤ C/n follows by (40). In fact, that inequality implies

E

[∫ T

0
|Z1,n
s − Z1

s |2ds
]
≤
∫ T

0
CE

[
|Y 1,n
s − Y 1

s |2
]
ds

+
8

n2
E

∫ T

0

∣∣∣∣∣∣ 1n
n∑
j=1

fu(Y 1,n
u , Y j,n

u , Z1,n)−
∫
Rm

fu(Y 1
u , y, Z

1
u) dL(Y 1

u )(y)

∣∣∣∣∣∣
2

ds

 .
We have just seen that, up to the factor CT (for some constant C > 0), the first term is smaller than
the second one, which in turn is less than C/n for some constant C > 0. This completes the proof. �
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3.4. Proof of Theorem 14. The main argument for the proof is the probabilistic representation of
parabolic PDEs on the Wasserstein space given in [16]. This representation links the PDE (17) to the
(decoupled) McKean Vlasov FBSDE

(41)

{
Xt,ξ
s = ξ +

∫ s
t B(Xt,ξ

u ,L(Xt,ξ
u )) du+

∫ s
t σ(Xt,ξ

u ,L(Xt,ξ
u )) dW 1

u

Y t,ξ
s = G(Xt,ξ

T ,L(Xt,ξ
T )) +

∫ T
s F (Xt,ξ

u , Y t,ξ
u , Zt,ξu ,L(Xt,ξ

u ),L(Y t,ξ
u )) du−

∫ T
s Zt,ξu dWu.

In preparation for the proof of Theorem 14, let us first show the following Lipschitz-type property for
the solution of (41).

Lemma 18. If the functions B,F and G are LF Lipschitz continuous, then there is a constant C
depending only on LF and T such that

E
[
|Y t,ξ
t − Y

t,ξ′

t |2
]
≤ CE

[
|ξ − ξ′|2

]
for every square integrable and Ft-measurable random variables ξ, ξ′.

Proof. This follows by standard arguments, thus we give only the main steps of the proof. Firstly, apply

Itô’s formula to |Y t,ξ
s − Y t,ξ′

s |2, s ∈ [t, T ] and then using Lipschitz continuity of G and F and Young’s
inequality to obtain

E[|Y t,ξ
t − Y

t,ξ′

t |2] ≤ LFE[|Xt,ξ
T −X

t,ξ′

T |
2 +W2

2 (L(Xt,ξ
T ),L(Xt,ξ′

T ))] + (5LF + 1)E
[ ∫ T

t
|Y t,ξ
u − Y t,ξ′

u |2

+ |Xt,ξ
u −Xt,ξ′

u |2 +W2
2 (L(Xt,ξ

u ),L(Xt,ξ′
u )) +W2

2 (L(Y t,ξ
u ),L(Y t,ξ′

u ))
]
.

Since we have W2
2 (L(Xt,ξ

u ),L(Xt,ξ′
u )) ≤ E[|Xt,ξ

u − Xt,ξ′
u |2] and a similar inequality for Y t,ξ and Y t,ξ′ ,

applying Gronwall’s inequality yields (with L̃F := 5LF + 1)

E[|Y t,ξ
t − Y

t,ξ′

t |2] ≤ eL̃FT L̃F (1 + T )E
[

sup
u∈[0,T ]

|Xt,ξ
u −Xt,ξ′

u |2
]
.(42)

Next, we can estimate |Xt,ξ
u −Xt,ξ′

u |2 using Lipschitz continuity of b and σ and Burkholder-Davis-Gundy
inequality to obtain

E
[

sup
u∈[0,T ]

|Xt,ξ
u −Xt,ξ′

u |2
]
≤ E

[
|ξ − ξ′|2 + C

∫ T

0
|Xt,ξ

u −Xt,ξ′
u |2 +W2

2 (L(Xt,ξ
u ),L(Xt,ξ′

u )) du
]

where C is a constant depending only on LF and the universal constant in Burkholder-Davis-Gundy
inequality. Thus, applying Gronwall’s inequality yields

E
[

sup
u∈[0,T ]

|Xt,ξ
u −Xt,ξ′

u |2
]
≤ eCTE

[
|ξ − ξ′|2

]
.

Combine this with (42) to conclude. �

Proof of Theorem 14. First note that the PDE (18) admits a (classical) solution. Assumption (PDE1)
says that B is differentiable on P2(Rd). Thus, it follows by [12, Proposition 5.35] that, for every x ∈ Rd,
the projection of B on Rd× (Rd)n given by (x,x) 7→ B(x,x) := B(x, Ln(x)) is again differentiable, with

(43) ∂xiB(·,x) =
1

n
∂µB(·, Ln(x))(xi), i = 1, . . . , n.
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One similarly shows that the respective projections σ, F and G of σ, F and G on finite dimensional
spaces (with appropriate dimensions) are three times differentiable, and by the identity (43) the deriva-
tives of first and second order are bounded by LF . In particular, the bound does not depend on n. There-
fore, it follows from [42, Theorem 3.2] that the PDE (18) admits a solution vi,n : [0, T ]× (Rd)n → Rm
with the probabilistic representation

vi,n(s,X1,n,t,x1
s , . . . , Xn,n,t,xn

s ) = Y i,n,t,x
s for all s ≥ t, (t,x) ∈ [0, T ]× (Rd)n,

where (Xi,n,t,xi , Y i,n,t,x, Zi,n,t,x)i=1,...,n,t≥0 solves the decoupled FBSDE

(44)


Xi,n,t,xi
s = xi +

∫ s
t B(Xi,n,t,xi

u , Ln(Xt,x
u )) du+

∫ s
t σ(Xi,n,t,xi

u , Ln(Xt,x
u )) dWu

Y i,n,t,x
s = G(Xi,n,t,xi

T , Ln(Xt,x
T )) +

∫ T
s F (Xi,n,t,xi

u , Y i,n,t,x
u , Zi,n,t,xu , Ln(Xt,x

u ), Ln(Yt,x
u )) du

−
∫ T
s Zi,n,t,xu dWu

i = 1, . . . , n

with Xt,x := (X1,n,t,x1
u , . . . , Xn,n,t,xn

u ) and Yt,x := (Y 1,n,t,x
u , . . . , Y n,n,t,x

u ). In particular vi,n(t,x) =

Y i,n,t,x
t . Naturally, it follows by standard SDE and BSDE theories (see e.g. [41]) that the system (44)

is well-posed, since by (PDE1) and the identity (43), the functions B,σ and F are Lipschitz continuous
(recall they are defined on finite dimensional spaces).

On the other hand, the PDE (17) is connected to the decoupled McKean-Vlasov FBSDE (41) whose
solution is the triple (Xt,ξ, Y t,ξ, Zt,ξ)t, with ξ ∈ L2(Ω,Ft, P ;Rd) fixed. Since B is differentiable on
P2(Rd), it follows by definition of ∂µB that for every µ, µ′ ∈ P2(Rd), one has

B(x, µ)−B(x, µ′) =

∫ 1

0

∫
Rd

∂µB(x, λµ+ (1− λ)µ′)(y)(µ− µ′)(dy)dλ.

Since y 7→ ∂µB(x, µ)(y) is LF -Lipschitz continuous, it follows by Kantorovich-Rubinstein formula that

|B(x, µ)−B(x, µ′)| ≤
∫ 1

0
LFW1(µ, µ′) dλ = LFW2(µ, µ′).

That is, B is Lipschitz continuous. One similarly shows that the functions σ, F and G are Lipschitz
continuous on their respective domain. Thus, the equation (41) is well-posed, see e.g. [44] and [12].

By the assumption (PDE) and Lemma (18) we can apply [16, Proposition 5.2], to obtain that the
PDE (17) is well-posed and that its solution V satisfies

V (s,Xt,ξ
s ,L(Xt,ξ

s )) = Y t,ξ
s

for all 0 ≤ t ≤ s ≤ T and ξ ∈ L2(Ω,Ft, P ;Rd). In particular, V (t, ξ, µ) = Y t,ξ
t for all (t, ξ, µ) ∈

[0, T ]× L2(Ω,Ft, P ;Rd)× P2(Rd) with L(ξ) = µ.
Let ξi, i = 1, . . . , n, be i.i.d. random variables in L2(Ω,Ft, P ;Rd) with common law µ and denote

ξ := (ξ1, . . . , ξn). Then we have

E
[

sup
t∈[0,T ]

|v1,n(t, ξ1, . . . , ξn)− V (t, ξ1,L(ξ1))|2
]

= E
[

sup
t∈[0,T ]

|Y 1,n,t,ξ
t − Y t,ξ1

t |2
]
.(45)

To conclude, it remains to estimate the convergence rate of the right hand side of (45). This can be done
as in the proof of Theorem 8. The only difference here being that the generator and terminal condition
of the n-particle system “depends on (i, n)” through the processes Xi,n,t,ξi and their empirical measure.
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But thanks to the Lipschitz continuity property of F and G (proved above) this does not cause much
problems. One can follow the estimations in the proofs of Lemma 17 and Theorem 8, adding the terms

δns := |X1,n,t,ξ1
s −Xt,ξ1

s |2 and ηns :=W2
2 (Ln(X

t,ξ1
s ),L(Xt,ξ1

s )).

In fact, using the arguments leading to Equation (33), Equation (36) and Equation (38) respectively,
we obtain

E
[

sup
t∈[0,T ]

|Y 1,n,t,ξ
t − Y t,ξ1

t |2
]
≤ 16L2

F e
2LFTE

[ ∫ T

0

(
δnu + ηnu +W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u ))
)
du

+

∫ T

0
|Z1,n,t,ξ
u − Zt,ξu |2 du

]
+ 2L2

GE
[
δnT + ηnT

]
,

E
[
|Y 1,n,t,ξ
s − Y t,ξ

s |2
]
≤ e(4+LF )LFT

(
LGE

[
δnT + ηnT

]
+ LFE

[ ∫ T

0

(
δnu + ηnu +W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u ))
)
du
])

≤ e(4+LF )LFT (TLF ∨ LG ∨ LF )

(
E
[

sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns

]
+ E

[ ∫ T

0
W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u )) du
])

(46)

and

E
[ ∫ T

0
|Z1,n,t,ξ
u − Zt,ξu |2 du

]
≤ (LF + 1)

(
LGE

[
sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns

]
+

∫ T

0
(5 + LF )LFE

[
|Y 1,n,t,ξ
u − Y t,ξ

u |2
]
du

+ LFE
[ ∫ T

0
W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u )) du
])
.

Therefore, there is a constant CLF ,T depending only on LF and T such that

(47) E
[

sup
t∈[0,T ]

|Y 1,n,t,ξ
t −Y t,ξ

t |2
]
≤ CLF ,T

(
E
[

sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns

]
+

∫ T

0
E
[
W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u ))
]
du
)
.

Moreover, by the theory of (forward) propagation of chaos, see e.g. [13, Theorem 2.12], it holds that

(48) E
[

sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns

]
≤ Cεn.

It remains to estimate E
[
W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u ))
]
. This is done as follows. We apply Itô’s formula to

|Y i,n,t,ξ
s − Y t,ξ

s |2. This yields, thanks to the Lipschitz continuity of F and G,

|Y i,n,t,ξ
s − Y t,ξ

s |2 ≤ LF (δnT + ηnT ) + LF

∫ T

s

[(
δnu + ηnu + |Zi,n,t,ξu − Zt,ξu |+ |Y i,n,t,ξ

u − Y t,ξ
u |

+W2(Ln(Yt,ξ
u ),L(Y t,ξ

u ))
)
|Y i,n,t,ξ
u − Y t,ξ

u | −
1

2
|Zi,n,t,ξu − Zt,ξu |2

]
du

−
∫ T

s
(Y i,n,t,ξ
u − Y t,ξ

u )(Zi,n,t,ξu − Zt,ξu ) dWu.
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Thus, using sucessively Young’s inequality with a constant α > 0 and Gronwall’s inequality we have

|Y i,n,t,ξ
s − Y t,ξ

s |2 ≤ CLF ,α,TE
[

(δnT + ηnT ) +

∫ T

s

(
δnu + ηnu +W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u ))
)

+
( 1

2α
− 1

2

)
|Zi,n,t,ξu − Zt,ξu |2 du | Fs

]
≤ CLF ,TE

[
sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns +

∫ T

0
W2

2 (Ln(Yt,ξ
u ),L(Y t,ξ

u )) | Fs
]
,

where the second inequality follows by choosing α > 1 and for some constant CLF ,T > 0. Since

W2
2 (Ln(Yt,ξ

u ),L(Y t,ξ
u )) ≤ 1

n

n∑
i=1

|Y i,n,t,ξ
u − Y t,ξ

u |2,

we obtain by Gronwall’s inequality that

E
[
W2

2 (Ln(Yt,ξ
s ),L(Y t,ξ

s ))
]
≤ CLF ,TE

[
sup
s∈[0,T ]

δns + sup
s∈[0,T ]

ηns

]
and it thus follows from (47) and (48) that

E
[

sup
t∈[0,T ]

|Y 1,n,t,ξ
t − Y t,ξ

t |2
]
≤ CLF ,T εn

for some constant CLF ,T > 0. Combining this with (45) leads to (19).
To prove (21), let (ξ1, . . . , ξn) be n i.i.d. Ft-measurable, square integrable random variables. It follows

by triangle inequality that

|vi,n(t, ξ1, . . . , ξn)− V (t, ξi, L
n(ξ))| ≤ |vi,n(t, ξ1, . . . , ξn)− V (t, ξi,L(ξ1)|+ |V (t, ξi,L(ξ1))− V (t, ξi, L

n(ξ))|
≤ |vi,n(t, ξ1, . . . , ξn)− V (t, ξi,L(ξ1)|+ CW2(L(ξ1), Ln(ξ)),

where the second inequality follows by Lipschitz continuity of V given in [16, Proposition 5.2]. Therefore,
we obtain by (19) and [20, Theorem 1] that

E
[
|vi,n(t, ξ1, . . . , ξn)− V (t, ξi, L

n(ξ))|2
]
≤ CLF ,T (εn + rn,d,k,2).

This concludes the proof. �
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